Traditionally, there have been two main options for solar installation designers and engineers to convert DC to AC power: string inverters or micro inverters. Both present significantly different advantages and disadvantages for installers, with installation expenses varying up to 20 percent depending on the inverter selection. Either solution had drawbacks: what one would gain in convenience, it would sacrifice in performance and maintenance and vice versa. But a new class of inverter is entering the market that combines the installation simplicity of a string inverter with the intelligence and energy harvest advantages of a micro inverter.

Analysis by the U.S. Department of Energy (DOE) showed installation labor to be largest expense category associated in PV applications. With installation and maintenance costs outweighing the panels, framing, and other associated expenses by a factor of two to three, a new solution was needed to make solar energy installations more affordable for residential and small/mid-sized commercial applications.

The micro-parallel inverter (MPI) is a new emerging class of inverter; aimed at helping to further the proliferation of solar energy into the residential and small commercial market segments (5 kW-200 kW) by reducing installation and maintenance costs. A micro-parallel inverter is designed to invert four panels in parallel and provide advanced data, communications and IT features. The MPI system can also be utilized for off-grid, grid-tied, and grid-tied with emergency backup applications. It has a wide enough input; voltage, current and frequency range to operate with generator or battery based grids for application flexibility that surpasses its two predecessors.

Incorporates the Latest Communication Technology

Designed around the concept of easing the ergonomic burden of installation, registration, and maintenance, the micro-parallel inverter tackles the difficult chore of reducing the cost of acquisition and ownership by simplifying the installation, cabling and activation processes.

MPIs benefit from newer technological innovations in controller and communication modules, allowing additional features previously not available in existing inverters. The resulting innovations give the MPI improved intelligence, ubiquitous data display with remote control, and continuously adjusting energy harvest schemes controlling the MMPT for each individual panel. This control automatically throttles energy conversion based on temperature to maximize the energy production of each panel. Fault alert processing notifies maintenance when a specific part has failed, and isolates the location and identifies the specific failed part for expedited ordering and replacement. These features will reduce unneeded maintenance truck rolls to repair and replace.

MPI Installation Is Simplified

Wiring for residential or commercial 240-VAC single or 3-phase MPI systems is similar to standard building construction. PV system installation with the MPI is configured as a modular, plug-n-play approach.

Continue reading here:
New Micro-Parallel Inverters Aim to Reduce System Costs, Improve Performance

Related Posts
August 14, 2014 at 10:16 am by Mr HomeBuilder
Category: Wiring Installation