An electric fence is a barrier that uses electric shocks to deter animals or people from crossing a boundary. The voltage of the shock may have effects ranging from discomfort to death. Most electric fences are used today for agricultural fencing and other forms of animal control, although it is frequently used to enhance the security of sensitive areas, such as military installations, prisons, and other security sensitive places; places exist where lethal voltages are used.

Electric fences are designed to create an electrical circuit when touched by a person or animal. A component called a power energizer converts power into a brief high voltage pulse. One terminal of the power energizer releases an electrical pulse along a connected bare wire about once per second. Another terminal is connected to a metal rod implanted in the earth, called a ground or earth rod. A person or animal touching both the wire and the earth during a pulse will complete an electrical circuit and will conduct the pulse, causing an electric shock. The effects of the shock depend upon the voltage, the energy of the pulse, the degree of contact between the recipient and the fence and ground and the route of the current through the body; it can range from barely noticeable to uncomfortable, painful or even lethal.

Early alternating current (AC) fence chargers used a transformer and a mechanically-driven switch to generate the electrical pulses. The pulses were wide and the voltage unpredictable, with no-load peaks in excess of 10,000 volts and a rapid drop in voltage as the fence leakage increased. The switch mechanism was prone to failure. Later systems replaced the switch with a solid-state circuit, with an improvement in longevity but no change in pulse width or voltage control.

"Weed burner" fence chargers were popular for a time and featured a longer-duration output pulse that would destroy weeds touching the fence. These were responsible for many grass fires when used during dry weather. Although still available, they have declined in popularity.

Modern "low impedance" fence chargers use a different design. A capacitor is charged by a solid-state circuit upon contact with a grounded animal or person, the charge is then released using a thyristor or similar solid-state component. Voltage is consistent due to electronic output controls, within the limits of output power. Pulse width is much narrower, often about 10 microseconds. This design works for either battery or mains power sources.

Depending on the area to be fenced and remoteness of its location, fence energizers may be hooked into a permanent electrical circuit, they may be run by lead-acid or dry cell batteries, or a smaller battery kept charged by a solar panel. The power consumption of a fence in good condition is low, and so a lead-acid battery powering several hundred metres of fence may last for several weeks on a single charge. For shorter periods dry cell batteries may be used. Some energizers can be powered by more than one source.

Smooth steel wire is the material most often used for electric fences, ranging from a fine thin wire used as a single line to thicker, high-tensile (HT) wire. Less often, woven wire or barbed wire fences can be electrified, though such practices create a more hazardous fence, particularly if a person or animal becomes caught by the fencing material (electrified barbed wire is illegal in some areas). Synthetic webbing and rope-like fencing materials woven with fine conducting wires (usually of stainless steel) have become available over the last 15 to 20 years, and are particularly useful for areas requiring additional visibility or as temporary fencing.

The electrified fence itself must be kept insulated from the earth and from any materials that will conduct electricity and ignite or short out the fence. Fencing must therefore avoid vegetation, and cannot be attached directly to wood or metal posts. Typically, wooden or metal posts are driven into the ground and plastic or porcelain insulators are attached to them, or plastic posts are used. The conducting material is then attached to the posts.

Electrified palisade fences are usually made from painted mild steel, galvanized steel, stainless steel or aluminium. Typically the fences are 2.4 metres (7ft 10in). The palisade fence is mechanically stronger than a typical steel cable electric fence to withstand impact from wildlife, small falling trees and wildfires.

First published in 1832, Chapter 7 of Domestic Manners of the Americans by Fanny Trollope describes an arrangement of wires connected with an electrical machine used to protect a display called "Dorfeuille's Hell" in the Western Museum of natural history in Cincinnati,[1] which she herself invented.[2] Published in 1870, Chapter 22 of Jules Verne's 20,000 Leagues Under the Sea, describes, "The Lightning Bolts of Captain Nemo" the use of electrification of a structure as a defensive weapon.[3] Published in 1889, Mark Twain's novel A Connecticut Yankee in King Arthur's Court, uses an electric fence for defensive purposes.

Read more here:
Electric fence - Wikipedia, the free encyclopedia

Related Posts
October 27, 2014 at 10:09 pm by Mr HomeBuilder
Category: Fences