High Wycombe, UK (PRWEB UK) 6 February 2014

The second-floor laboratory in Christchurch House regularly accommodates up to seventy students at the same time, carrying out practical scientific experiments. With Bunsen burners and fume cupboards being used throughout the day, and seventy people, each student generating 100 Watts of heat gain combined with substantial levels of carbon dioxide (CO2), there were on-going problems with the 100 square metre space due to poor indoor air quality. Whilst the laboratory was fitted with windows, its second-floor location meant that restrictors were fitted; so the limited amount of fresh air entering the space was not enough to reach all areas of the deep-plan space.

The Universitys Estates Department decided it was time to address the problem and the Henderson Green mechanical/electrical engineering consultancy based in Southampton, which supplies design services to Bournemouth University on a range of projects, was briefed to improve environmental conditions within the space.

Henderson Green managing director Russell Pitman says first thoughts involved traditional approaches such as AC units or a roof-mounted air handling unit pumping fresh air into the laboratory.

But having discussed options with the Universitys Environment & Energy Team it was decided to investigate alternatives that would also provide a low carbon solution.

Commenting for the University, the Estates Departments Energy Officer (Technical) Dave Archer says that during the initial search he came across a Cool-phase article in a HVAC journal and decided to add the new system to the list.

The Cool-phase system, which reduces the running costs of buildings and creates a fresh and healthy indoor environment without compressors or hazardous coolants, can maintain temperatures within the comfort zone, while radically reducing energy consumption by up to 90% compared to conventional cooling systems.

Henderson Green was then asked to undertake a feasibility study to establish whether Cool-phase could handle the two key objectives the fresh air requirements and the cooling load; and Monodraught was asked to design the system and provide calculations to confirm it could achieve the required flow rates, etc.

Says Russell: We reviewed, and eventually tested, Monodraughts Cool-phase system against the air handling option and found that from the energy-saving viewpoint Cool-phase won hands-down, with relatively little increase in cost. Encouraged, we then went into a more detailed phase with Monodraught to ensure that the initial calculations matched the requirements of the space in everyday operational conditions.

Once the air quality calculations and financial appraisals were completed and the University was satisfied that the system would do the job, Cool-phase was given the green light and two systems were installed in the laboratory by Monodraught, as part of a turnkey contract with one of the Universitys approved building contractors.

See more here:
Cool-phase Science Improves the Student Environment in Bournemouth University Laboratory

Related Posts
February 6, 2014 at 10:05 pm by Mr HomeBuilder
Category: Ceiling Installation